A limiting weak type estimate for capacitary maximal function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limiting Weak–type Behavior for Singular Integral and Maximal Operators

The following limit result holds for the weak–type (1,1) constant of dilation-commuting singular integral operator T in Rn: for f ∈ L1(Rn), f ≥ 0, lim λ→0 λ m{x ∈ R : |Tf(x)| > λ} = 1 n ∫ Sn−1 |Ω(x)|dσ(x)‖f‖1. For the maximal operator M , the corresponding result is lim λ→0 λ m{x ∈ R : |Mf(x)| > λ} = ‖f‖1.

متن کامل

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

A Weak L 2 Estimate for a Maximal Dyadic

Lacey and Thiele have recently obtained a new proof of Carleson’s theorem on almost everywhere convergence of Fourier series. This paper is a generalization of their techniques (known broadly as time-frequency analysis) to higher dimensions. In particular, a weaktype (2,2) estimate is derived for a maximal dyadic sum operator on R, n > 1. As an application one obtains a new proof of Sjölin’s th...

متن کامل

A Weak-type Estimate for Commutators

Let K be a smooth Calderón-Zygmund convolution kernel on R and suppose we are given a function a ∈ L∞. The two-dimensional commutator Tf(x) = ∫ K(x− y)f(y) ∫ [x,y] a(z) dz dy was shown to be bounded on L(R), p > 1 by Christ and Journé [1]. In this article, we show that this operator is also of weak type (1, 1).

متن کامل

A Sharp Estimate for the Hardy-littlewood Maximal Function

The best constant in the usual L norm inequality for the centered Hardy-Littlewood maximal function on R is obtained for the class of all “peak-shaped” functions. A function on the line is called “peakshaped” if it is positive and convex except at one point. The techniques we use include variational methods. AMS Classification (1991): 42B25 0. Introduction. Let (0.1) (Mf)(x) = sup δ>0 1 2δ ∫ x+δ

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus Mathematique

سال: 2014

ISSN: 1631-073X

DOI: 10.1016/j.crma.2013.11.008